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NON-LINEAR NATURAL FREQUNCIES OF A ROTATING BEAM 

MOUNTED ON AN ELASTIC FOUNDATION 

By 

Mohammad A. Saidi 

Supervisor 

Dr. Ahmad Al-Qaisia 

Co-Supervisor 

Dr. Basem Al-Bedoor 

ABSTRACT 

In this study, the non-linear dynamic model, of a rotating beam with a tip 

mass and a flexible root, attached to a hub with an attachment angle which 

is mounted on an elastic foundation, is derived using the Lagrangian 

dynamics in conjunction with Assumed Modes Method. The Euler-

Bernoulli beam theory is adapted. The model equations are coupled and 

non-linear.    

The Method of Multiple Scales, and the Method of Harmonic Balance are 

used to study the effects of the hub radius, attachment angle, tip mass, 

rotary inertia, torsional spring constant, and non-dimensional rotating speed 

on the first three non-linear natural frequencies, the results showed that as 

the tip mass and rotary inertia increase, the non-linear natural frequencies 

decrease, while as the attachment angle, hub radius, and torsional spring 

constant increase the non-linear natural frequencies increase. 

The results of this work have applications in various fields such as; space 

application, robotic manipulators and turbo-machinery blades, due to their 

importance in design, control, precise positioning and performance 

evaluation. 
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Introduction 

In general all bodies that possess mass and elasticity can vibrate and 

accordingly most structures and mechanical systems can experience some 

kinds of vibration. This can be set in a variety of contexts ranging from a 

simple mass-spring system or gyroscopic instruments to helicopter, turbine, 

compressor and propeller blades. 

The vibrational theory is concerned with the study of oscillatory motions of 

bodies and the forces associated with them. These studies constitute an 

important part of the structural and mechanical system design. 

Oscillatory motion is one of the main reasons for several mechanical 

failures. In spite of great progress in mechanical design, engineers have not 

yet been able to fully prevent failures that result from vibration of moving 

or rotating elements in machines like turbines and compressor. Unwanted 

vibrations may lead to rapid wear of machine parts causing damages or 

excessive noises. Vibration must be studies and controlled properly. In 

spite of its undesirable effect vibration can be found useful in several 

industrial or consumer applications. 

There has in recent years been an upsurge of interest in the vibrational 

analysis of elastic structures rotting at a constant angular velocity. 

Numerous structural configuration such as turbine, compressor, helicopter 

blades, spinning spacecraft, satellites, and also rotating shafts and linkages 

fall into this category.  

The essential feature that distinguished such systems form non-rotating 

ones is in general, the complexity of the accelerations, which act 

throughout the system, in addition to the acceleration resulting form elastic 

structural deformations. The equations of motion may involve significant 

gyroscopic or Coriolis and centripetal accelerations. Also the stiffness  
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characteristics of the structures may be modified by the steady state inertia 

loads induced by the centrifugal forces. Consistent mathematical models 

that addressed the beam as typical rotating element and considering only 

the beam transverse deflection have resulted in softening effect. This 

behavior contradicts the practical physics of the problem that forced 

researchers to seek techniques to compensate for this contradiction through 

studying the effect produced by the centrifugal force. 

1.1 Problem Description 

In this study, the equations of motion governing the nonlinear vibrations of 

isotropic, inextensible, rotating Euler–Bernoulli beam (with solid cross 

sectional area) with a tip mass and a flexible root, attached to a hub with an 

attachment angle which is mounted on an elastic foundation by using 

Lagrangian Dynamics in conjunction with the Assumed Modes Method 

(AMM). 

The position vector of a typical material point is used in deriving the 

kinetic energy expression which includes the base two degrees of freedom, 

the rigid body rotation of the hub-beam system, and the tip mass. The 

geometrically exact curvature is employed in expressing the beam elastic 

potential energy due to the axial shortening. The system Lagrangian in 

conjunction with the assumed modes method, and after imposing the beam 

inextensibility constraint, is used to develop four degrees of freedom 

system. The four degrees of freedom being the horizontal and vertical 

position of the hub-beam assembly, the rigid body rotation of the hub, and 

the transverse deflection of the beam in the modal domain. First order 

multiple scales expansion, single term harmonic balance, and two term 

harmonic are used in studying the effect of root radius beam length-ratio  
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torsional spring constant attachment angle, tip mass , and rotary inertia on 

non-linear natural frequencies. 

1.2 Thesis Objectives  

Deriving the equations of motion for a rotating beam with tip mass and 

flexible root attached to a hub mounted on an elastic foundation. 

Solve the equation of motions using the Method of Multiple Scale and the 

Method of Harmonic Balance. 

Study the effect of different parameters tip mass, rotary inertia, attachment 

angle and hub radius on non-linear natural frequency. 
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Literature Review 

The vibration of a rotating beam has been studied earlier as Shilhansi 

(1958) and Prudli (1972) have shown that the rotation speed strengthens the 

beam and produces high natural frequencies. Kaza and Kavternik (1977) 

reported results on the non-linear flap-lag axial equations of a rotating 

beam. 

 Later Hoa (1977) used a finite element method based on a third order 

polynomial to investigate the vibration frequency of a rotating beam with a 

tip mass taken into account the effects of root radius and the setting angle. 

Bhat (1986) used the beam characteristic orthogonal polynomial in a 

Rayleigh-Ritz analysis to determine the natural frequencies of flexural 

modes of rotating cantilever beam with a tip mass at the free end. He 

concluded that the use of beam characteristic orthogonal polynomials in 

Rayleigh-Ritz method gives good results compared to other methods of 

solution. 

Lee (1994) investigated the effect of gravity on the stability of a rotating 

cantilever beam in a vertical plane with constant angular velocity. 

Surace et al. (1997) have used the Houblot and Brooks equations for non-

uniform pretwisted rotting blade. And carryout the flap-lag torsional 

vibration analysis using an integral approach based on the use of Green 

functions, they have found that the dynamic characteristics obtained with 

this approach are in good agreement with the results of other methods. 

Yoo and Shin (1998) derive the equations of motion of coupled stretching 

and bending rotating cantilever beam, then they used the modal analysis to 

solve the equation of motion. They have found that the non-linear natural  
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frequency shows a significant difference compared to the results ignoring 

the coupling effect. 

Fung and Yau (1999) studied the vibration of an arm rotates horizontally 

about clamped axis while other end is constrained to move against a curve. 

They ignored rotary inertia and shear deformation and derived the 

equations of motion and boundary conditions by using Hamilton’s principle 

then they used a power series method to solve the equation of motion. Al-

Beddor (2001) developed a reduced non-linear dynamic model for the 

shaft-disk blade unit to study effect of shaft torsional vibration on blade 

bending vibration. 

Yoo et al. (2001) derived the equations of motion for the vibration analysis 

of rotating pre-twisted blade by using modeling method, which employs 

hybrid deformation variables, and then they investigated the effect of pre-

twist angle and hub radius on tuned angular speed. They concluded that as 

hub radius and pre-twist angle increase tuned angular speed increase, but 

the hub radius affects more significantly than the pre-twist angle. 

Vibration of rotating Timoshenko beam and the effect of Coriolis force on 

the natural frequencies was investigated by (Lin and Hasio ,2001). The 

equations of motion are derived by the d’Alembert principle and the virtual 

work principle. Then they expressed a solution for the equation of motion 

as a power series, they concluded that the Coriolis force effect on the 

natural frequencies might be neglected. Modeling of a rotating flexible 

inextensible arm mounted on a rigid hub with a setting angle is considered 

by (Hamden and Al-Bedoor ,2001), they have taken into the account the 

effect of axial shortening due to bending  in the formulation of both the  
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kinetic and potential energy , they concluded that the non-linear terms 

could improve the stability of the system dynamic behavior. 

Al-Qaisia (2002) studied the variation of the natural frequency with 

vibration amplitude of a beam clamped with an angle to a rigid rotating hub 

and carrying a tip mass with rotary inertia. 

Tsai (2004) studied the vibration behavior of full cycle of 60 blades. First 

he collect the geometric dimensions and material properties of a single 

blade, then he created a finite element model of a single blade and full 

cycle of 60 blades and performed the vibration analyses using ANSYS 

software.  

Al-Qaisia (2004) developed a model of a rotating beam based on the large 

deformation theory using inextensibility condition and simulated it 

numerically, and studied the effect of; rotational speed, torque period,  and 

beam length on the dynamic behavior of the rotating beam.    

Recently Al-Qaisia and Al-Bedoor (2005) developed four different 

methods for accounting for axial shortening in rotating beam and used the 

method of time transformation to find the frequency for the different 

method. They have found that the Potential Energy Method (PM) give good 

results compared to other methods investigated.  

The objectives of this work, is extend the analysis presented in (Al-

Qaisia,2002 and 2004). And study the effect of base and root flexibility on 

non-linear natural frequencies. It can also be seen that the method of 

multiple scales and the method of harmonic balance used in this study 

haven’t been used in studying the non-linear natural frequencies. 

The interest of the model is that it can model many physical applications, 

for example; a turbo machinery blade clamped to a disk with an attachment  
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angle, the bearing can be modeled as an elastic foundation and a flexible 

arm or a robotic manipulator carrying an end effector, which can be 

modeled as a flexible beam having a concentrated mass with rotary inertia 

at the free end.   
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Methods and Procedures 

In this chapter, the equations of motion governing the nonlinear vibrations 

of a rotating beam with a tip mass and a flexible root are derived. 

Various methods have been developed for deriving the equations of motion 

of rotating beam, here the Lagrangian approach in conjunction with the 

Assumed Modes Method (AMM) is followed. In particular, the approach 

used by (Al-Qaisia and Al-Bedoor, 2005) has been adopted.  

3.1 Model Description and Assumptions 

Figure (1) shows a uniform beam, having rectangular cross-sectional area, 

flexural rigidity (EI), constant length (l), and mass per unit length (ρ), with 

a concentrated tip mass with mass (mt), and rotary inertia (Jt) attached to a  

hub of radius (R) with an angle (η), which is mounted on an elastic 

foundation, and rotates with constant angular velocity ().  

 

Figure (1) Rotating hub-beam system mounted on an elastic foundation 

The coordinate systems used in developing the model are shown in figure 

(1), where XY denotes the inertial reference frame that is fixed in space  
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which has the unit vectors I and J, while xy is the system of orthogonal axes 

rotating with the hub with the origin O at the root of the beam which has 

the unit vectors i and j, and yx  is a system of orthogonal axes with 

common origin O with xyz system and with orientations along the major 

dimensions of the beam: i.e., the xaxis is along the length of the beam, the 

yaxis is along the thickness of the beam, (also called the principal axes), 

which has the unit vectors i, and j. 

The beam deflection is assumed to be restricted to the horizontal x-y plane, 

the beam is assumed to be inextensible, composed of a homogeneous, 

isotropic material, and has a slender shape so that shear and rotary inertia 

effects are negligible. The hub is assumed to be a rigid uniform disk. The 

flexible root is assumed to be a torsional spring at the beam root. The 

elastic foundation is assumed to be linear springs with stiffness (Kx), and 

(Ky) in X and Y directions respectively 

3 .2 Problem Formulation 

In this section equations of motion will be derived using the Lagrangian 

approach in conjunction with the (AMM). First an expression for the 

position vector for a material point on the beam is found, then the kinetic 

energy expression for the system, non-linear curvature for the beam, the 

Inextensibility condition for the beam and the potential energy expression 

for the system is derived. After that the kinetic and potential energy 

expressions in conjunction with (AMM) is used to obtain the Lagrangian of 

the system. Then the equations of motion are derived using Lagrange 

Equation. Lastly they are simplified and written them in non-dimensional 

form 
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3.2.1 Position vector 

In the analysis presented in this section, the beam model shown in figure 

(1) is used. 

The global position vector of an arbitrary point P (Rp) in the inertial 

reference frame, on the flexible beam can be expressed as (Abed, 2003). 

phop rAARRR ]][[   (3.1) 

 Where (Ro) is the position vector of the hub center in the inertial reference 

frame XY and can be represented as follows (Al-Bedoor et al., 2002) 

YJXIRo   (3.2) 

Where X and Y are respectively, the X and Y inertial components of the 

vector Ro. 

(Rh) is the position vector of the origin of the xy system in the inertial 

reference frame XY and can be represented as follows (Al-Bedoor et al., 

2002). 

JRIRRh  sincos   (3.3) 

Where (θ) measures the angular position of the hub.  

[Aθ] is the rotational transformation matrix from the xy system to XY system 

and is given by (Al-Bedoor et al., 2002) 








 





 cossin
sincos

][A  
(3.4) 

[Aη] is the rotational transformation matrix form the yx  system to xy 

system and is given by (Abed, 2003) 
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






 





 cossin
sincos

][A  
                                                         

(3.5) 

(rp) is the position vector of the point p in the yx  system and can be written 

in the form  

 jtsvisrp  ,                                                             

(3.6) 

Where (s) is the axial position of point p measured relative to the yx  , and 

v(s,t) is the lateral displacement of the point p along the yaxis. 

The velocity of the arbitrary point p in the inertial reference frame can be 

obtained by differentiating equation (3.1) with respect to time (t) as 

follows: 

 

pphop rAA
dt
d

rAARRR ]][[]][[     (3.7) 

Where dots denote differentiation with respect to time (t) 

Substituting equations (3.2)-(3.6) and their derivatives into equation (3.7), 

the velocity vector of the point P is given by 

pR  

   IvvsvvsRX ]cossincossinsin)cos)sincos(([     

      JvvsvvsRY ]sinsincossincoscossincos[            

(3.8) 

Let  

   cossincos vvsR    (3.9) 

And 

   sincossin vvs    (3.10) 

Then (3.8) can be written as 
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   JYIXRp  sincoscossin    (3.11) 

3.2.2. System Kinetic Energy 

The kinetic energy of the system (T) consists of three parts, the kinetic 

energy of the hub (Th), the kinetic energy of the beam (Tb), and the kinetic 

energy of the tip mass (Tt). 

T=Th+Tb+Tt                                                                                                     (3.12) 

so that the kinetic energy of the hub can be expressed as follows  

222

2
1

2
1

2
1 

hhhh IYmXmT   
(3.13) 

Where (mh) is the mass of the hub, and (Ih) is the mass moment of inertia of 

the hub and is given by 

 

2

2
1

RmI hh   (3.14) 

Substitute (3.14) into (3.13) we get 

2222

4
1

2
1

2
1  RmYmXmT hhhh   (3.15) 

The kinetic energy of the beam is given by (Al-Qaisia Al-Bedoor, 2005) 


l

p
T
pb dsRRT

0

.
2
1   

(3.16) 

Substituting Eq. (3.11) into (3.16) then the kinetic energy of the beam can 

be written as 

  
l

b dsYXT
0

2222

2
1    

(3.17) 

The kinetic energy of the tip mass is given by (Al-Qaisia, 2004) 
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 2
2
1

2
1

lstlsp
T
ptt JRRmT


    (3.18) 

Where () is the time derivative of the slope of the deformed beam and is 

given by (Al-Qaisia, 2004)  







  2

2
1

1 vv  
(3.19) 

Substitute Eqs. (3.11) and (3.19) into Eq. (3.18), then the kinetic energy of 

the tip mass can be written as  

 
2

22222

2
1

1
2
1

2
1

















 




ls
tlstt vvJYXmT                            

(3.20) 

Substitute Eqs. (3.9) and (3.10) into Eqs. (3.17) and (3.20), then substitute 

the results and Eq. (3.15) into (3.12) then the total kinetic energy of the 

system is expressed as 
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 (3.21) 

3.2.3. Nonlinear Curvature 

The curvature (κ) is given by (Takahashi, 1979). 

2

2

2

1 







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
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











s
v

s
v

  (3.22) 

Expanding in a Taylor expansion, and retaining the non-linear terms up to 

an order of four, we have 


























4

2

2

2
1

1
s
v

s
v  (3.23) 

3.2.4. Inextensibility condition  

One can relate the axial shortening due to the transverse deflection as 

follows (Araft, 1999). We now consider the deformation of an element CD  

of the beam’s neutral axis, which is of length ds and located at a distance s 

from the origin O of the (x,y) system as shown in figure (2).  

 

Figure (2) Deformation of a beam element along the neutral axis. 

Upon deformation, let CD move to C*D*. we denote the displacement  
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components of C and D by (u, v) and (u+du, v+dv), respectively. From 

figure (2) the strain (e) at point C can be calculated as  

    11 22
22*







 vu
ds

dsdvduds
ds

dsds
e  (3.24) 

We assume beam neutral axis to be inextensible; that is e= 0. The 

Inextensibility constraint equation thus is  

  11 22  vu  (3.25) 

Where, primes denote differentiation with respect to dimensional spatial 

variable s. 

Solving for uand expanding the results in a Taylor expansion, we have 







  42

4
1

2
1

vvu  (3.26) 

3.2.5. System Potential Energy 

The potential energy of the system (V) consists of three parts potential  

energy of the hub (Vh), potential energy of the beam (Vb) and potential 

energy stored in torsional spring (Vt) 

bth VVVV    (3.27) 

The potential energy of the hub is given by (Abed, 2003) 

22

2
1

2
1

YKXKV yxh   (3.28) 

Potential energy stored in torsional spring is given by (Abed, 2003) 

02
1














s

Tt s
v

KV  
(3.29) 

(KT) torsional spring constant at beam root and 
0



ss
v

is the slope of 

deformed beam at its root. 

The potential energy of the beam is constituted form the elastic beam strain 

energy (VE), and the potential energy of the axial shortening due to  
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transverse deformation and the motion generated inertial force (VA). 

Vb=VE+VA (3.30) 

The elastic beam strain energy is given by (Hamdan and Al-Bedoor, 2001) 


l

E dsEIV
0

2

2
1   

(3.31) 

Substitute (3.22) in (3.31) and retaining the terms up to the fourth order we 

get 

 

  
l

E dsvvvEIV
0

222

2
1

                                                                                   

(3.32) 

The centrifugal force on the material point P of the beam (Fp) is given by 

(Al-Qaisia and Al-Bedoor, 2005) 

  
l

s
p dssRF 2   

(3.33) 

Upon evaluating the integral given in equation (3.33) the centrifugal force 

is given by 

   



  222

2
1

slslRFp   
(3.34) 

The virtual work that results from the axial shortening (u) under the effect 

of the inertial forces of equation (3.33) can be called the axial shortening 

potential energy (VA) and can be written as (Al-Qaisia and Al-Bedoor, 

2005) 


l

pA duFV
0

 
(3.35) 

 Substituting the inertial force (3.34) and the axial shortening (3.26) into the 

integral of equation (3.35) yields 
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    dsvvslslRV
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42222
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1

2
1   

(3.36) 

Substitute Eqs. (3.32) and (3.36) in Eq. (3.30) then the beam potential 

energy can be written as  

      dsvvslslRdsvvvEIV
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b  


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(3.37) 

 

Substitute Eqs. (3.28), (3.29) and (3.37) into Eq. (3.27) then the potential 

energy of the system is given by  

 

    dsvvslslR
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(3.38) 

3.2.6 Assumed Mode Method (AMM) 

In the analysis of a nonlinear continuous system, which has an infinite 

number of degrees of freedom, a modal discretization is often employed to 

obtain a reduced-order model of the system. Here we used the 

dimensionless AMM in particular which is used in discretizing the beam 

elastic deformation, v(s,t) as follows (Lee, 1994) 

  )(),( tqltv    (3.39) 

Where 
l
s

 , q(t) is an unknown time modulation of the assumed deflection 

mode   .   is spatial function, for the present study,   is assumed to 

be that of non-rotating liner beam which can be written in the form 
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 iiiii pCpCpCpC coshsinhcossin)( 4321   (3.40) 

Where C1, C2, C3, C4 are arbitrary constants to be determined by using the 

following four boundary conditions (Karunendiran, 1999). 

0),0( tv  

),0()0( tv
EI

lK
v T   

),1(),1( 4 tvp
l

m
tv i

t


  

),1(),1( 4
3

tvp
l

J
tv i

t 


 
(3.41) 

Where, primes denote differentiation with respect to non-dimensional 

spatial variable ς. 

Substituting  (3.41) into (3.40) we get 

 i
i

iiiiii p
a
p

ppCpp sin
2

)sin(sinhcoshcos)(
4

  
(3.42) 

Where Ci is given by 

 iiiii
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p
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sinsinhcoshcos
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

  
(3.43) 

And the pi are the roots of the equation 

0coshsinsinhcos
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(3.44) 

3.2.7. The Lagrangian Equations of Motions   

For an n degree of freedom system, with n generalized coordinates, 

equations of motion can be obtained via Lagrange’s  
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0
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











b
L

b
L

dt
d

  
(3.45) 

Where b is the generalized coordinate vector and is composed of b=[q, θ, 

X, Y], and (L) is the Lagrangian, and is defined as the difference between 

the kinetic and potential energy 

L=T-V (3.46) 

Substitute Eq. (3.39) in Eqs. (3.21) and (3.38) and then substitute the 

results in (3.46) and using the non-dimensional quantities 
l

s


 ,
l
X

X and  

l
Y

Y   then the Lagrangian can be written as 
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(3.47) 

Where the bar over X and Y has been dropped for ease of notation. 
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  sin2sin 214 a  









  

1

0
1215 cos2


 ad  









  

1

0
1216 sin2


 ad  

Substitute Eq. (3.47) in Eq.(3.45) we obtain  
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The above four coupled and non-linear equations are difficult to solve as 

they stand. And thus a simplification is needed to enable one to obtain a 

reasonable understanding of the system behavior. Assuming that the hub 

rotates at constant angular velocity then 0 , assuming that the linear 

springs (elastic foundation) in X and Y directions is prescribed by a 

harmonic functions  

tX eo
*sin  (3.52) 

tY eo
*cos  (3.53) 

Respectively.  

Where o and ω*
e are the amplitude and frequency of the harmonic 

functions. 
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3.2.8 Dimensionless Equations of Motion 

To lend generality to the numerical results equations are to be transformed 

into dimensionless equations. For this transformation, dimensionless time 

parameter is defined as follows: 

tt n
*  (3.54) 

Where 
2
1

5

10
2














n  

Substitute Eqs. (3.52)  and (3.53) into Eq.(3.49) and transforms the 

derivatives form t to t* then Eq. (3.48) can be written as 

        *22324
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(3.55) 
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Here dots derivative with respect to non-dimensional time t*. u=piq is a 

dimensionless tip displacement,
ni


  is a dimensionless hub speed ratio, 

and 
n

e
e 




*

  is a dimensionless excitation frequency. 

3.3. Methods of Solution 

In this section, the relation between nonlinear natural frequencies and 

rotating speed for rotating beam is obtained using the method of multiple 

scales, and the method of harmonic balance. Hub radius beam length ratio,  



www.manaraa.com

 

 

24 

tip mass, rotary inertia, attachment angle, and flexible root are investigated. 

3.3.1. The Method of Multiple Scales 

The origins of the method of multiple scales go back to Krylov and 

Bogoliubov in 1932 (Cartmell. et al., 2003) The general principle behind 

the method is that dependent variable(s) is (are) uniformly expanded in 

terms of two or more independent variables, nominally referred to as 

scales. This obviously requires that the time derivatives of the dependent 

variable(s) are similarly expressed, with the general consequence that 

uniformity is relatively well preserved. (Cartmell. et al., 2003) 

The multiple independent variables are generated with respect to real 

(clock) time t such that 

tT n
n       for n=0,1,2,… (3.56) 

Clearly, then, the time derivatives will be expansions, in their own right, in 

terms of partial derivatives, each with respect to the Tn as follows: 
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(3.57) 

where 

n
n T

D



      n=0,1,2,… 

The dependent variables are typically expressed by the following 

    )(,...,,
1

0
1, m

m

j
moj

j TOTTTutu  




      
(3.58) 

Substituting of (3.57) and (3.58) into the governing equations of motion 

results in a set of perturbation equations, hierarchically order to ε , which 

can then be solved successively. Solution can proceed form this point,  
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notwithstanding the removal of secular terms (terms whose structure results 

in nonuniformity of the power series solution). Uniformity is assured if εjuj 

=. Secular terms are routinely identified, by means of recognizable 

resonance conditions, removed, and then equated to zero. This process in 

invariably used to determine the amplitudes A of the zeros order 

perturbation solution (sometimes called the generating solution) whereby, 

for j=0, and expressed in complex form (for later algebraic expediency),  

oo TiTi
o eAAeu    (3.59) 

Noting that ω is an appropriate natural frequency of un-damped vibration 

and that the over-bar represents complex conjugacy. Once this stage has 

been reached, solutions can be obtained, progressively, to higher orders or 

perturbation for each different resonance condition. Finally, the 

perturbation solutions for the resonance condition of interest are 

recombined according to Eq.(3.58) to give an approximate, but frequently 

very accurate, solution to the dependent variables in the time domain. 

(Cartmell. et al., 2003) 

3.3.1.1.  First Order Expansion  

In this subsection, first order approximation of Eq. (3.55) is obtained for 0 

attachment angle and without elastic foundation. In order to apply the 

method of multiple scales described above, it is necessary to reorder 

various terms in Eq. (3.55), for example, since the concern is with primary 

resonance, the non-linear terms, are multiplied by a small gauge parameter, 

ε, so that they appear at the same order in the perturbation scheme (Al-

Qaisia and Hamdan, 1999). Accordingly Eq. (3.55) becomes; 
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    02 324
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2
1  uuuuuuuuuuuuu     (3.60) 

the solution of Eq. (3.60) can represented by put m=2 in Eq. (3.58)  

     ,...,,...,; 111 TTuTTutu ooo    (3.61) 

Substituting Eq. (3.61) into Eq. (3.60), and equating like powers of ε to 

zero, one obtains 

ε0:  2
1

2 1  ooo uuD   0  (3.62) 
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(3.63)    

 

Let 2
1

2 1  m . Then the solution of Eq.(3.62) can be written as 

      oo imTimT
oo eTAeTATTu  111,  (3.64) 

Where A is an unknown complex function and A is the complex conjugate 

of A. substituting Eq. (3.64) into Eq. (3.63) leads to 
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(3.65) 

Where the cc denotes the complex conjugate of the preceding terms. 

Eliminating the terms in Eq. (3.65) that produce secular terms in u1 yields 

063232 32
5

2
4

22
3

22
21  AAmAAmAAAAAimD                       

(3.66) 

Write A in polar form 

iaeA
2
1

  (3.67) 

Where a and β are real function of T1. Substituting (3.67) into (3.66) and 

separating the result into real and imaginary parts, we obtain 
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0a  

 

Where the prime denotes the derivative with respect to T1. It follows that a 

is a constant and hence that 
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(3.68) 

Where βo is a constant. Substituting Eq. (3.67) in Eq. (3.66), we find that 
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(3.69) 

Substituting for uo from Eq. (3.64) into Eq. (3.61) and using the Eq. (3.69), 

we obtain 

 otau   cos  (3.70) 
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(3.71) 

is the non-dimensional non linear natural frequency. 

3.3.2 The Method of Harmonic Balance 

The harmonic balance method facilitates the investigation of a periodic 

response from any system. The idea is to express the periodic solution of 

the equation of any system in the form. 

 


M

m m tmAu
0

)cos(  (3.72) 

and then substituting in the equation of the system and equating the 

coefficient of each of the lowest M+1 harmonics to zero, we obtain a 

system of M+1 algebraic equations relating ω and the Am. Usually these 

equations are solved for Ao, A1, A2,…,Am and ω in term of A1. The accuracy 

of the resulting periodic solution depends on the value of A1 and the  
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number of harmonics in the assumed solution (Nayfeh, 1979) 

3.3.2.1 Single Term Harmonic Balance (SHM) 

In this subsection, non-linear natural frequency of Eq. (3.55) is obtained for 

0 attachment angle and without elastic foundation then Eq.(3.55) becomes.  

    02 324
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3
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1  uuuuuuuuuuuuu    (3.73) 

One-term expansion can be expressed as  

)cos(1 tAu   (3.74) 

Where A1 is constant amplitude and ω is the dimensionless natural 

frequency.  

Substituting (3.74) and its time derivatives into Eq. (3.73), collecting the 

coefficient of cos(ωt) and equating them to zero, one obtains the relation 
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(3.75) 

3.3.2.2 Two Term Harmonic Balance (THM) 

In this subsection, non-linear natural frequencies are obtained for any 

attachment angle and without elastic foundation then Eq.(3.55) becomes. 
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1  ouuuuuuuuuuuuu    (3.76) 

In order to study the effect of attachment angle, we need to include other 

terms besides the first harmonic following (Al-Qaisia and Hamdan, 2001) 

and putting  

)cos(1 tAAu o   (3.77) 

Where Ao is a constant bias. 

Substituting Eq. (3.77) and its time derivatives into Eq. (3.76), collecting 

the constant terms and the coefficients of cos(ωt) and equating them to  
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zero, one obtains the following set of non-linear algebraic equations for the 

unknowns Ao, A1, and ω. 
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Results 

In this section the effect of root radius, tip mass, on the variation of the 

dimensionless non-linear natural frequency with the dimensionless 

rotational speed are presented in figures using the method of multiple scale 

and harmonic balance 

4.1 Numerical Results 

In table (2) some of the results are compared with available results obtained 

by (Eric,2002).The parameters used in computing non-linear natural 

frequencies are those given in (Eric,2002). l=9m, ρ=10 kg/m , EI=3.99×105 

N.m2 and  R=0.5m.  

Table (2)The first three non linear natural frequencies (Hz) of a rotating 

uniform beam for different rotating speed 

 0 rad/sec 30 rad/sec 

Method 1st 

mode 

2nd 

mode 

3rd 

mode 

1st 

mode 

2nd 

mode 

3rd 

mode 

MMS 8.671 54.339 152.15 18.104 91.190 198.925 

SHB 8.678 54.402 152.309 18.153 91.290 199.109 

(Eric,2002). 8.672 54.35 152.2 34.03 95.84 200.5 

 

4.2 Effect of the Root Radius   

Figs. (3-5) shows the influence of the dimensionless rotating speed and hub 

radius ratio (R/l) on the first three non-linear natural frequencies of a 

uniformly cantilever beam with parameters (a2=0, a3=0,a4=∞ η=0 and 

(R/l)=0.25).  Using the (MMS) Eq.(3.71) and (SHB) Eq. (3.75). 
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Figure (3): Variation of the first natural frequencies with angular velocity 

for different values of (R/l), using: (a) SHB (b) MMS. 
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Figure (4): Variation of the second natural frequencies with angular 

velocity for different values of (R/l), using: (a) SHB (b) MMS. 

 

 

Figure (5): Variation of the third natural frequencies with angular velocity 

for different values of (R/l), using: (a) SHB (b) MMS. 4.3 Effect of Root 

Spring Constant 

Figs. (6-8) show the influence of the torsional root spring constant (a4) on 

the first three non-linear natural frequencies of a rotating beam with 

parameters (a2=0, a3=0, η=0  and (R/l)=0.25) using the (MMS) Eq.(3.71) 

and (SHB) Eq. (3.75). 
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Figure (6):The influence of the angular velocity (Ω) and rotational root 

spring constant (a4) on the second non-linear natural frequency. (a) SHB 

(b) MMS. 
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Figure (7): The influence of the angular velocity (Ω) and rotational root 

spring constant (a4) on the second non-linear natural frequency. (a) SHB 

(b) MMS. 
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Figure: (8): The influence of the angular velocity (Ω) and rotational root 

spring constant (a4) on the third non-linear natural frequency. (a) SHB (b) 

MMS 

4.4 Effect of the Attachment Angle 

Figs. (9-11) show the influence of the attachment angle (η) on the first three 

non-linear natural frequencies of a uniformly rotating cantilever beam with 

parameters (a2=0, a3=0, a4=∞ and (R/l)=0.25).  Using the Eqs. (3.78 and 

3.79) which is solved numerically by direct iteration techniques with 10-6 

accuracy 

 

Figure (9):The influence of the angular velocity (Ω) and setting angle (η) 

on the first t non-linear natural frequency. 
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Figure (10):The influence of the angular velocity (Ω) and setting angle (η) 

on the second non-linear natural frequency. 

 

Figure (11):The influence of the angular velocity (Ω) and setting angle (η) 

on the third non-linear natural frequency. 

4.5 Effect Tip Mass 

The influence of dimensionless rotational speed on the non-linear natural 

frequencies of a uniformly cantilever beam with parameters (a3=0, a4=∞,  
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η=0  and (R/l)=0.5).   with different values of tip mass constant  is shown in 

Figs.(12-14) using the (MMS) Eq.(3.71) and (SHB) Eq. (3.75). 
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Figure (12): The influence of the angular velocity (Ω) and tip mass constant 

(a2) on the first non-linear natural frequency. (a) SHB (b) MMS. 
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Figure (13): The influence of the angular velocity (Ω) and tip mass constant 

(a2) on the second non-linear natural frequency. (a) SHB (b) MMS. 
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Figure (14): The influence of the angular velocity (Ω) and tip mass constant 

(a2) on the third non-linear natural frequency. (a) SHB (b) MMS. 
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4.6 Effect of Rotary Inertia  

The influence of dimensionless rotational speed on the non-linear natural 

frequencies of a uniformly cantilever beam with parameters (a2=0.1, a4=∞, 

η=0  and (R/l)=0.25) .with tip mass constant having different inertia 

constans  are shown in Figs.(15-17) using the (MMS) Eq.(3.71) and (SHB) 

Eq. (3.75). 

 

Figure (15): The influence of the angular velocity (Ω) and rotary inertia 

constants (a3) on the first non-linear natural frequency. (a) SHB (b) MMS. 
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Figure (16): The influence of the angular velocity (Ω) and rotary inertia 

constants (a3) on the second non-linear natural frequency. (a) SHB (b) 

MMS. 

 

Figure (17): The influence of the angular velocity (Ω) and rotary inertia 

constants (a3) on the third non-linear natural frequency. (a) SHB (b) MMS. 
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Discussion 

5.1 Numerical Results 

As can be seen form table (1) that (MMS) and (HB) give approximately the 

same results. It can also be noted that there is a difference in values of non-

linear natural frequencies between the present study and (Eric, 2002). Table 

(2) summarize the percentage of differences between them.   

Table (2) Percentage of differences (%) between (Eric, 2002).MMS, and 

SHB 

 0 rad/sec 30 rad/sec 

Method 1st mode 2nd mode 3rd mode 1st mode 2nd mode 3rd mode 

MMS 0.01153 0.0202 0.0329 46.79 4.85 0.78 

SHB 0.06918 0.0957 0.0716 46.65 4.74 0.69 

These differences maybe due to the nonlinear terms including in modeling 

our model. There is a good agreement in non-linear natural frequencies for 

non-rotating beam. The percentages of difference become smaller for 

higher modes. 

5.2 Effect of the Root Radius 

Figs. (3-5) Show the influence of the dimensionless rotating speed and hub 

radius ratio on non-linear natural frequencies. It can be noted that the 

dimensionless non-linear natural frequencies (ω) increase as the angular 

speed ratio (Ω), and the increasing rate become larger as the hub radius 

ratio (R/l) become larger. This can be explained by the fact that the 

centrifugal force increases as the angular speed and the hub radius increase. 

5.3 Effect of Torsional Root Spring Constant 
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Figs. (6-8) show the influence of the torsional root spring constant on the 

non-linear natural frequencies. For the first non-linear natural frequency 

Fig. (6) it can be noted that as torsional spring constant increase the non-

linear natural frequency increase, but this increase becomes small for large 

values of torsional spring constant (a4) 

For higher modes (second and third) although the non-linear natural 

frequency will increase as torsional spring constant (a4) increase Figs (7 

and 8) but this increase is small, as we increase (a4) from 10 to ∞ the non-

dimensional natural frequency (ω) increased by a percentage of 4.6387% 

and 2.1561% at Ω=5 for the second and third mode respectively where it 

was 33.00% for the first mode.   

5.4 The Effect of Attachment Angle 

The effect of attachment angle on the first three frequencies is shown in 

Figs. (9-11)   

For the first non-linear natural frequencies Fig. (9) as attachment angle 

increase the non-linear natural frequency will increase. 

For higher modes (second and third) Figs. (10 and 11) the attachment angle 

hasn’t a significant effect on non-linear natural frequencies. As we increase 

(η) from 0 to 70o the non-dimensional natural frequency (ω) increased by a 

percentage of 0.6199% and 0.04896% at Ω=5 for the second and third 

mode respectively where it was 42.98% for the first mode.  

5.5 Effect of Tip Mass   

It can be seen from Figs. (12-14) That as the tip mass constant (a2) 

increased the natural frequencies are decreased this is due to that as tip 

mass constant is increased, both the centrifugal force and mass of the 

system would increase. Increasing the centrifugal force will increase the  
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non-linear natural frequencies, but the opposite effect of the tip mass 

constant is to increase the mass of the system (which is the dominant) and 

to decrease the natural frequencies.  

As can be seen for Fig. (12) that for the first non-linear natural frequency 

the (MMS) and (SHB) fail to predict the behavior of rotating beam with tip 

mass constant greater than 0.2. 

It can also be seen that at higher modes (Second and third) Figs. (13 and 

14) the non-linear natural frequencies tend to converge to a common value 

for large values of a2. As we increase (a2) from 0 to 1 the non-dimensional 

natural frequency (ω) increased by a percentage of 32.1378% and 

14.5963% at Ω=5 for the second and third mode respectively where it was 

increased by a percentage of 4.6307% and 0.7147% for second and third 

mode respectively as we increase a2 from 1 to 100.  

5.6 Effect of Rotary Inertia  

It can be seen from Figs. (15-17) That as the rotary inertia constant (a3) 

increased the natural frequencies are decreased. 
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Conclusions and Recommendations 

6.1 Conclusions 

In this study we have use the Method of Multiple Scales and the method of 

Harmonic Balance to find the non-linear natural frequencies of a rotating 

beam cantilever beam with tip mass and elastic root. The influence of the 

tip mass, the rotary inertia of the tip mass, the rotating speed, torsional 

spring constant, and hub radius ratio have been studied. It is shown that 

1) The MMS and SHB give the same results approximately. 

2) When increasing the hub radius ratio, the first three non-linear natural 

frequencies are increased. 

3) When the tip mass parameter is increased, the first three non-linear 

natural frequencies are decreased. 

4) When the torsional spring constant is increased the vibration frequencies 

increased. 

5) When the rotary inertia constants are increased, the natural frequencies 

are decreased. 

6) When attachment angle is increased the non-linear natural frequencies 

decreased. 

6.2 Recommendations 

It is recommended to carry out an experimental study to give more rigid 

results.  It is also recommended to carryout second order MMS 

approximation and uses more harmonics in the assumed solution in the 

method of harmonic balance. It is also recommended to develop a new 

model, which take into account the coupled bending-bending vibration the 

effect of linear springs at the root of beam in addition to the torsional 

spring. 
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الترددات الطبيعية اللاخطية لعارضة مرنة دوارة مثبتة على قاعدة 
 مرنة
 اعداد

 محمد علي الصعيدي
 
 

 المشرف
 الدكتور أحمد القيسية

 
 المشرف المشارك

 الدكتور باسم البدور

 
 ملخص

في هذه الدراسة قمنا باشتقاق نموذج لا خطي لعارضة دوارة مثبتة على قاعدة مرنة 

 ت  لارران  وررققة اليغ  اإففتراضغة.باستخدام معادلا

ثم قمنا باستخدام ررققة متعددة المقاقغس وررققة التوازن التوافقي لتحلغل تأثغر الكتلة 

الطرفغة والقيور الدوراني والجذر المرن وزاوقة اإفتيال ونيف قطر السرة على 

 الترددات  الطبغعغة اللاخطغة .

رفية والقصور الدوراني فإن الترددات الطبيعية أظهرت النتائج أنه بزيادة الكتلة الط

اللاخطية تقل، بينما بازدياد كل من نصف قطر السرة وزاوية الإتصال والجذر المرن 

 فإن الترددات الطبيعية اللاخطية تزداد .

 

 


